חמישה תנאים ללמידת מכונה באבטחת מידע

דרוג:

"למידת מכונה" הפכה למילת באזז שספקים רבים אוהבים להשתמש בה ולפזר אותה כסוג של קסם על פתרונות אבטחת המידע שלהם על מנת למכור יותר. אחת מהמשימות הקשות שצצו לאחרונה, היא לדעת להעריך נכון פתרונות מבוססי למידת מכונה ולסנן את המוץ מן התבן.
 
לא אתאר במאמר זה מהי למידת מכונה או מדוע אנחנו צריכים אותה (בשביל זה יש ויקיפדיה), אבל אציין כי הגישה ללמידת מכונה חייבת תמיד להיות מבוססת על מדע, שקיפות וולידציה. וכדי להפוך את החיים של כולנו למעט יותר קלים, ראו חמישה קריטריונים ברורים שיעזרו לכם לבחון את איכותם של הפתרונות בהקשר זה, ללא קשר לסוג האלגוריתם שנמצא בשימוש: 

1. שיעור זיהוי (Detection Rate) מול תוצאות חיוביות שגויות (false positive) – שעור זיהוי גבוה אינו בהכרח סמן להצלחה. אפשר להגיע לשיעור זיהוי של 100% בקלות רבה, על ידי "שכנוע" האלגוריתם כי כל קובץ שהוא סורק הינו זדוני. לכן, הערך החשוב באמת הוא שיעור התוצאות החיוביות השגויות. תוצאה חיובית שגויה משמעה בפועל מניעת שימוש בקבצים לגיטימיים שבטעות זוהו כזדוניים. המטרה היא כמובן להגיע לשיעור נמוך ככל האפשר של תוצאות חיוביות שגויות. בלמידת מכונה, ניתן לבחון זאת גראפית על ידי עקומת ROC (receiver operating characteristic curve) המתארת את יחס שעור הזיהוי אל מול התוצאות החיוביות השגויות. בקשו מהיצרנים לראות את גרף ה- ROC, ברגע זה ובעבר – יצרן שלא מוכן או לא יכול להראות לכם את הנתונים האלו, לא באמת יוכל להבטיח לכם כמה נוזקות הוא יצליח למנוע מלחדור לארגון.

2. עדכונים – למידת מכונה מאפשרת לפתרונות אבטחת המידע לזהות איומים שלא זוהו בעבר ולחסום אותם. למידת מכונה טובה אינה זקוקה לעדכונים רבים לאורך הדרך, שכן היא אכן לומדת לבד אודות איומים חדשים במשך זמן ארוך. פתרון טוב יראה תוצאות טובות בגרף ה- ROC למשך חודשים ולא רק למשך ימים או שבועות. פתרון שזקוק לעדכונים רבים ופתרון שהדיוק שלו מידרדר בין עדכון לעדכון, לא באמת מספק את הסחורה.

3. החלטות בזמן אמת – אם הסריקה וחיפוש אחר נוזקות ארוך יותר מהזמן שלוקח לנוזקה לעשות את העבודה המלוכלכת שלה, זכינו בפתרון מצוין בזיהוי אבל לא במניעה. אם אנחנו רוצים למנוע נוזקות, האלגוריתם של למידת המכונה צריך לדעת לפעול תוך אלפית השנייה, ולא תוך שניות או דקות. חשוב לבדוק האם האלגוריתם נכנס לפעולה בזמן אמת וכמה זמן לוקח לו לבצע החלטות. בנוסף, בדקו מה קורה לרמת הדיוק שלו כאשר המחשב נמצא במצב לא מקוון - פתרון למידת מכונה עם סט מידע שלא יתאים לנקודות הקצה שלכם, ייאלץ לעבוד עם חיבור ענני ויהיה גם איטי וגם לא אמין.

4. לימוד בעולם האמיתי – הביצועים של האלגוריתם תלויים רבות במידע שעליו התבסס הלימוד שלו. אם המידע אקדמי, ישן ולא רלוונטי, האלגוריתם לא יבצע עבודתו בצורה אמינה בקבצים של העולם האמיתי מחוץ למעבדה. בדקו מהו המידע שעליו מתבסס האלגוריתם, האם הוא ריאלי ומציאותי ומהו נפח המידע.

5. יכולת גידול – לצורך תהליך הלימוד של הפתרון, יש צורך ביכולת לאסוף מידע חדש בהיקפים גדולים, בין היתר קבצים לגיטימיים וקבצי נוזקות. יחד עם זאת, לא די באיסוף כמויות עצומות של מידע - המידע הולך ומתרבה לאורך זמן, ולכן הפתרון צריך להיות מסוגל ללמוד ולבחון מידע החדש שנאסף, בו בזמן שבסיס הנתונים והלימוד גדל באופן משמעותי, וזאת תוך שמירה על מהירות אחידה וגבוהה.
 
לסיכום, למידת מכונה היא ללא ספק "הדבר החם הבא" בעולם אבטחת המידע והמחשוב בכלל. קיימים פתרונות רבים בשוק שמצהירים כי הם מציעים יכולות אלו. לפני שבאים לבחון אותם, אל שכחו לשאול את השאלות הנכונות.
תגיות של המאמר: 

כתבות נוספות בקטגוריה הייטק וטכנולוגיה

העדשות הכפולות של C30 Dual מעניקות להורים יד מסייעת IMILAB, מובילה בטכנולוגיית בית חכם, תשיק את IMILAB
BlinkOps משיקה את הפלטפורמה הראשונה ללא קוד לבניית סוכני אבטחה עבור צוותים ארגוניים BlinkOps, הפלטפורמה המובילה בתחום האוטומציה של האב
Imricor מתחילה בניסוי VISABL-VT ‏ Imricor Medical Systems, Inc. ("החברה" או Imrico
HYCU® חושפת את R-Shield™ כדי לספק כיסוי חוסן סייבר מוחלט עבור סביבות תוכנה כשירות, מחשוב ענן וגם סביבות IT מקומיות HYCU, Inc, מובילה בתחום ההגנה על נתונים מודרניים ע
81% מצוותי אבטחת הסייבר רואים באוטומציית אבטחה מבוססת בינה מלאכותית עדיפות אסטרטגית – חשיפה של סקר שנערך על ידי BlinkOps BlinkOps, פלטפורמת אוטומציית האבטחה המובילה בשוק,
חברת הסטרטאפ Axibo AI מווטרלו הבטיחה 12 מיליון דולר כדי להיות חלוצה בפיתוח רובוטים דמוי אדם ש-'מיוצרים בקנדה' Axibo Inc, חברה חדשנית בתחום הרובוטיקה שפועלת מווט
ניצחונות לבינה המלאכותית בתחרות הנחשבת ביותר לרחפנים אוטונומיים באבו דאבי ליגת המרוצים לרחפנים אוטונומיים של אבו דאבי (A2RL)
OMP ממוקמת גבוה מכולן בקטגוריית יכולת הביצוע ב-Gartner® Magic Quadrant™ לשנת 2025 עבור פתרונות תכנון שרשרת אספקה OMP, מובילה עולמית בפתרונות תכנון שרשרת אספקה, הוכ
AI-Media חושפת את LEXI Voice בתערוכת NAB 2025 - זמין גלובלית עם תרגום קולי מועצם בינה מלאכותית AI-Media (ASX: AIM), מובילה עולמית בטכנולוגיית כתו
Zoom Workplace for Frontline זמין כעת כדי לשפר את התקשורת במשמרת ואת ניהול העבודה לעובדים בשטח Zoom Communications, Inc (נאסד"ק: ZM) הכריזה היום
GA-ASI מכריזה על השקעות טכנולוגיות מאירוע Blue Magic Netherlands General Atomics Aeronautical Systems, Inc (GA-ASI)
VeriSilicon משיקה מעבד גרפי OpenGL ES עם צריכת הספק נמוכה ביותר וביצועי 3D/2.5D היברידיים להתקנים לבישים VeriSilicon (688521.SH) הכריזה היום על השקת GCNano
VeriSilicon חושפת את VC9000D_LCEVC: מפענח וידאו LCEVC יעיל במיוחד התומך ב-8K Ultra HD ‏VeriSilicon (688521.SH) הכריזה היום על השקת VC900
Gradiant זוכה בפרס הזהב בטקס פרסי Edison לשנת 2025 עבור ForeverGone PFAS Removal and Destruction ‏Gradiant, חברה מובילה בעולם בתחום הטיפול המתקדם ב
SolarWinds מציגה באירועים הגלובליים של GITEX 2025 ‏SolarWinds (NYSE:SWI), ספקית מובילה של תוכנה פשוט
ExaGrid מרעננת את משפחת המוצרים שלה בדגמים חדשים ומוציאה את גרסה 7.2.0 ExaGrid®, הספקית של הפתרון היחיד בענף לאחסון גיבוי
GA-ASI חתמה על עסקת שיתוף פעולה עם Hanwha מדרום קוריאה General Atomics Aeronautical Systems, Inc. (GA-ASI
Bitget משיקה את Bitget Onchain כדי להעניק למשתמשי CEX גישה מוקדמת לנכסי בלוקצ'יין מבטיחים Bitget, הבורסה המובילה למטבעות קריפטוגרפים וחברת ה
DPI מקבלת את אישור ISO 27001 היוקרתי על ניהול אבטחת מידע ‏Datalec Precision Installations (DPI), ספקית מובי
GA-ASI מרחיבה את יכולת הכיוון למטה עבור MQ-9B SeaGuardian® General Atomics Aeronautical Systems, Inc (GA-ASI)
הוסף תגובה 
תגובות  ( תגובות)