חמישה תנאים ללמידת מכונה באבטחת מידע

דרוג:

"למידת מכונה" הפכה למילת באזז שספקים רבים אוהבים להשתמש בה ולפזר אותה כסוג של קסם על פתרונות אבטחת המידע שלהם על מנת למכור יותר. אחת מהמשימות הקשות שצצו לאחרונה, היא לדעת להעריך נכון פתרונות מבוססי למידת מכונה ולסנן את המוץ מן התבן.
 
לא אתאר במאמר זה מהי למידת מכונה או מדוע אנחנו צריכים אותה (בשביל זה יש ויקיפדיה), אבל אציין כי הגישה ללמידת מכונה חייבת תמיד להיות מבוססת על מדע, שקיפות וולידציה. וכדי להפוך את החיים של כולנו למעט יותר קלים, ראו חמישה קריטריונים ברורים שיעזרו לכם לבחון את איכותם של הפתרונות בהקשר זה, ללא קשר לסוג האלגוריתם שנמצא בשימוש: 

1. שיעור זיהוי (Detection Rate) מול תוצאות חיוביות שגויות (false positive) – שעור זיהוי גבוה אינו בהכרח סמן להצלחה. אפשר להגיע לשיעור זיהוי של 100% בקלות רבה, על ידי "שכנוע" האלגוריתם כי כל קובץ שהוא סורק הינו זדוני. לכן, הערך החשוב באמת הוא שיעור התוצאות החיוביות השגויות. תוצאה חיובית שגויה משמעה בפועל מניעת שימוש בקבצים לגיטימיים שבטעות זוהו כזדוניים. המטרה היא כמובן להגיע לשיעור נמוך ככל האפשר של תוצאות חיוביות שגויות. בלמידת מכונה, ניתן לבחון זאת גראפית על ידי עקומת ROC (receiver operating characteristic curve) המתארת את יחס שעור הזיהוי אל מול התוצאות החיוביות השגויות. בקשו מהיצרנים לראות את גרף ה- ROC, ברגע זה ובעבר – יצרן שלא מוכן או לא יכול להראות לכם את הנתונים האלו, לא באמת יוכל להבטיח לכם כמה נוזקות הוא יצליח למנוע מלחדור לארגון.

2. עדכונים – למידת מכונה מאפשרת לפתרונות אבטחת המידע לזהות איומים שלא זוהו בעבר ולחסום אותם. למידת מכונה טובה אינה זקוקה לעדכונים רבים לאורך הדרך, שכן היא אכן לומדת לבד אודות איומים חדשים במשך זמן ארוך. פתרון טוב יראה תוצאות טובות בגרף ה- ROC למשך חודשים ולא רק למשך ימים או שבועות. פתרון שזקוק לעדכונים רבים ופתרון שהדיוק שלו מידרדר בין עדכון לעדכון, לא באמת מספק את הסחורה.

3. החלטות בזמן אמת – אם הסריקה וחיפוש אחר נוזקות ארוך יותר מהזמן שלוקח לנוזקה לעשות את העבודה המלוכלכת שלה, זכינו בפתרון מצוין בזיהוי אבל לא במניעה. אם אנחנו רוצים למנוע נוזקות, האלגוריתם של למידת המכונה צריך לדעת לפעול תוך אלפית השנייה, ולא תוך שניות או דקות. חשוב לבדוק האם האלגוריתם נכנס לפעולה בזמן אמת וכמה זמן לוקח לו לבצע החלטות. בנוסף, בדקו מה קורה לרמת הדיוק שלו כאשר המחשב נמצא במצב לא מקוון - פתרון למידת מכונה עם סט מידע שלא יתאים לנקודות הקצה שלכם, ייאלץ לעבוד עם חיבור ענני ויהיה גם איטי וגם לא אמין.

4. לימוד בעולם האמיתי – הביצועים של האלגוריתם תלויים רבות במידע שעליו התבסס הלימוד שלו. אם המידע אקדמי, ישן ולא רלוונטי, האלגוריתם לא יבצע עבודתו בצורה אמינה בקבצים של העולם האמיתי מחוץ למעבדה. בדקו מהו המידע שעליו מתבסס האלגוריתם, האם הוא ריאלי ומציאותי ומהו נפח המידע.

5. יכולת גידול – לצורך תהליך הלימוד של הפתרון, יש צורך ביכולת לאסוף מידע חדש בהיקפים גדולים, בין היתר קבצים לגיטימיים וקבצי נוזקות. יחד עם זאת, לא די באיסוף כמויות עצומות של מידע - המידע הולך ומתרבה לאורך זמן, ולכן הפתרון צריך להיות מסוגל ללמוד ולבחון מידע החדש שנאסף, בו בזמן שבסיס הנתונים והלימוד גדל באופן משמעותי, וזאת תוך שמירה על מהירות אחידה וגבוהה.
 
לסיכום, למידת מכונה היא ללא ספק "הדבר החם הבא" בעולם אבטחת המידע והמחשוב בכלל. קיימים פתרונות רבים בשוק שמצהירים כי הם מציעים יכולות אלו. לפני שבאים לבחון אותם, אל שכחו לשאול את השאלות הנכונות.
תגיות של המאמר: 

כתבות נוספות בקטגוריה הייטק וטכנולוגיה

Ditchit פוצצה את הציפור האייקונית של Twitter כדי לסמל את השקת השוק המקומי במפגן ראוי שמתאים לפולקלור של עמק הסיליקון, Ditchi
CSG ו-AWS מאיצות את שיתוף הפעולה ביניהן לצורך האצת המעבר לענן בשירותי תקשורת ובשירותים פיננסיים בכלכלה גלובלית המתפתחת במהירות, חברות המספקות שירו
Ververica מכריזה על שותפות עם Aiven - מעצימה ארגונים מובילים ליצירת ערך מהנתונים שלהם בזמן אמת ‏Ververica, היוצרת המקורית של Apache Flink®‎ והמוב
פתרונות בינה מלאכותית בקצה מהדור הבא עבור העולם האמיתי: ניווט אוטונומי לרחפנים, למעקב ורובוטיקה Lantronix Inc. לנטרוניקס (נאסד"ק: LTRX), מובילה עו
Gevers מתחילה עידן חדש של ניהול קניין רוחני של לקוחות עם השקתה של AQX Law Firm של Anaqua Anaqua, הספקית המובילה של פתרונות ושירותים טכנולוג
GA-ASI מוסיפה יכולת התרעה מוקדמת מוטסת של Saab ל-MQ-9B General Atomics Aeronautical Systems, Inc (GA-ASI)
Atos חושפת מרכז פעילות אבטחה מונע בינה מלאכותית בקטאר, המחזק את חוסן הסייבר האזורי Atos, מובילה עולמית בהמרה דיגיטלית ואבטחת סייבר, ח
eSIM Go ו- CSG Accelerateמפשטים את המסע של MVNO בעת שהשוק הגלובלי של מפעילי רשת וירטואלית ניידת (M
Hypernative מגייסת 40 מיליון דולר בסבב Series B להסרת מכשולי אבטחה למען אימוץ נרחב של Web3 ‏Hypernative, הספקית המובילה של פתרונות למניעת איו
DALI Alliance זוכה בגדול ב-LightFair 2025 עם שני פרסי חדשנות עבור +DALI DALI Alliance גאה להכריז כי +DALI, טכנולוגיית בקרת
VeriSilicon מציגה ביצועים גבוהים וניתנים להרחבה עםIPs  של מחשוב GPGPU-AI, המעצימים פתרונות AI לתעשיית הרכב ושרתי קצה VeriSilicon (688521.SH) הכריזה היום על החידוש האחר
הבינה מלאת החיבה של LG מביאה מגע אנושי לבינה מלאכותית LG Electronics משיקה את הקמפיין החדש שלה, "בינה מל
Zoom חושפת את Virtual Agent 2.0 כדי להעצים תמיכה בלקוחות חכמה ואוטונומית באמצעות סוכני בינה מלאכותית מהדור הבא Zoom Communications, Inc. (נאסד"ק: ZM) הציגה היום
Denodo השיגה את ההסמכה Snowflake Financial Services Competency, מה שמחזק את התמיכה בחדשנות בתעשייה ובמשילות של נתונים Denodo, מובילה בתחום ניהול הנתונים, הודיעה כי השיג
ExaGrid זכתה ב-2 פרסי תעשייה חדשים בתחרות פרסי האחסון ‏ExaGrid® , הספקית של הפתרון היחיד בענף לאחסון גיב
פתרון השבב המותאם AI-ISP של VeriSilicon מאפשר ייצור המוני של סמארטפונים ללקוחות ‏VeriSilicon ‏(688521.SH) הכריזה לאחרונה כי פתרון
זום משלימה את ההשקה של Zoom Phone בשישה מעגלי טלקום, עם תוכניות להתרחבות נוספת בהודו Zoom Communications, Inc. (נאסד"ק: ZM) הודיעה היום
דו"ח המלחמה בהונאות של Bitget מראה כי הונאות הקשורות לבינה מלאכותית גרמו להפסדים של 4.6 מיליארד דולר בשוק הקריפטוגרפיה בשנת 2024 Bitget, בורסת המטבעות הקריפטוגרפים המובילה וחברת W
Enlaps השיקה את המצלמה Tikee mini+ ‏Enlaps, החברה המובילה בפתרונות ניטור ארוכי טווח ל
ה-NPU של VeriSilicon עם צריכת אנרגיה נמוכה מפיק למעלה מ-40 TOPS עבור הסקת LLM במכשיר עצמו עבור יישומים לנייד VeriSilicon ‏(688521.SH) הכריזה כי יחידת עיבוד הרש
הוסף תגובה 
תגובות  ( תגובות)