חמישה תנאים ללמידת מכונה באבטחת מידע

דרוג:

"למידת מכונה" הפכה למילת באזז שספקים רבים אוהבים להשתמש בה ולפזר אותה כסוג של קסם על פתרונות אבטחת המידע שלהם על מנת למכור יותר. אחת מהמשימות הקשות שצצו לאחרונה, היא לדעת להעריך נכון פתרונות מבוססי למידת מכונה ולסנן את המוץ מן התבן.
 
לא אתאר במאמר זה מהי למידת מכונה או מדוע אנחנו צריכים אותה (בשביל זה יש ויקיפדיה), אבל אציין כי הגישה ללמידת מכונה חייבת תמיד להיות מבוססת על מדע, שקיפות וולידציה. וכדי להפוך את החיים של כולנו למעט יותר קלים, ראו חמישה קריטריונים ברורים שיעזרו לכם לבחון את איכותם של הפתרונות בהקשר זה, ללא קשר לסוג האלגוריתם שנמצא בשימוש: 

1. שיעור זיהוי (Detection Rate) מול תוצאות חיוביות שגויות (false positive) – שעור זיהוי גבוה אינו בהכרח סמן להצלחה. אפשר להגיע לשיעור זיהוי של 100% בקלות רבה, על ידי "שכנוע" האלגוריתם כי כל קובץ שהוא סורק הינו זדוני. לכן, הערך החשוב באמת הוא שיעור התוצאות החיוביות השגויות. תוצאה חיובית שגויה משמעה בפועל מניעת שימוש בקבצים לגיטימיים שבטעות זוהו כזדוניים. המטרה היא כמובן להגיע לשיעור נמוך ככל האפשר של תוצאות חיוביות שגויות. בלמידת מכונה, ניתן לבחון זאת גראפית על ידי עקומת ROC (receiver operating characteristic curve) המתארת את יחס שעור הזיהוי אל מול התוצאות החיוביות השגויות. בקשו מהיצרנים לראות את גרף ה- ROC, ברגע זה ובעבר – יצרן שלא מוכן או לא יכול להראות לכם את הנתונים האלו, לא באמת יוכל להבטיח לכם כמה נוזקות הוא יצליח למנוע מלחדור לארגון.

2. עדכונים – למידת מכונה מאפשרת לפתרונות אבטחת המידע לזהות איומים שלא זוהו בעבר ולחסום אותם. למידת מכונה טובה אינה זקוקה לעדכונים רבים לאורך הדרך, שכן היא אכן לומדת לבד אודות איומים חדשים במשך זמן ארוך. פתרון טוב יראה תוצאות טובות בגרף ה- ROC למשך חודשים ולא רק למשך ימים או שבועות. פתרון שזקוק לעדכונים רבים ופתרון שהדיוק שלו מידרדר בין עדכון לעדכון, לא באמת מספק את הסחורה.

3. החלטות בזמן אמת – אם הסריקה וחיפוש אחר נוזקות ארוך יותר מהזמן שלוקח לנוזקה לעשות את העבודה המלוכלכת שלה, זכינו בפתרון מצוין בזיהוי אבל לא במניעה. אם אנחנו רוצים למנוע נוזקות, האלגוריתם של למידת המכונה צריך לדעת לפעול תוך אלפית השנייה, ולא תוך שניות או דקות. חשוב לבדוק האם האלגוריתם נכנס לפעולה בזמן אמת וכמה זמן לוקח לו לבצע החלטות. בנוסף, בדקו מה קורה לרמת הדיוק שלו כאשר המחשב נמצא במצב לא מקוון - פתרון למידת מכונה עם סט מידע שלא יתאים לנקודות הקצה שלכם, ייאלץ לעבוד עם חיבור ענני ויהיה גם איטי וגם לא אמין.

4. לימוד בעולם האמיתי – הביצועים של האלגוריתם תלויים רבות במידע שעליו התבסס הלימוד שלו. אם המידע אקדמי, ישן ולא רלוונטי, האלגוריתם לא יבצע עבודתו בצורה אמינה בקבצים של העולם האמיתי מחוץ למעבדה. בדקו מהו המידע שעליו מתבסס האלגוריתם, האם הוא ריאלי ומציאותי ומהו נפח המידע.

5. יכולת גידול – לצורך תהליך הלימוד של הפתרון, יש צורך ביכולת לאסוף מידע חדש בהיקפים גדולים, בין היתר קבצים לגיטימיים וקבצי נוזקות. יחד עם זאת, לא די באיסוף כמויות עצומות של מידע - המידע הולך ומתרבה לאורך זמן, ולכן הפתרון צריך להיות מסוגל ללמוד ולבחון מידע החדש שנאסף, בו בזמן שבסיס הנתונים והלימוד גדל באופן משמעותי, וזאת תוך שמירה על מהירות אחידה וגבוהה.
 
לסיכום, למידת מכונה היא ללא ספק "הדבר החם הבא" בעולם אבטחת המידע והמחשוב בכלל. קיימים פתרונות רבים בשוק שמצהירים כי הם מציעים יכולות אלו. לפני שבאים לבחון אותם, אל שכחו לשאול את השאלות הנכונות.
תגיות של המאמר: 

כתבות נוספות בקטגוריה הייטק וטכנולוגיה

סייביאיישן משתפת פעולה עם בואינג לשיפור אבטחת הסייבר והמוכנות הרגולטורית של מטוסים חברת סייביאיישן (CyViation), המתמחה באבטחת סייבר י
GITEX 2025: הצלחה של אבטחת בסייבר ברת אומדן על ידי Genians ו-RASInfotech באמצעות NAC, ‏EDR, ו-Universal ZTNA ‏Genians, הגוף המוביל בקוריאה בתחום בקרת גישה לרשת
Hammerspace בוחרת ב-Xsight Labs E1 800G DPU לפיתוח ארכיטקטורת רשת שטוחה ופתוחה עבור אחסון חם של AI ‏Xsight Labs הכריזה היום על שותפות עם Hammerspace
Xsight Labs ו-Cyber Forza חוברות לאספקה של פתרונות סייבר מהפכניים עבור AI ותשתית ענן ‏Xsight Labs הכריזה על שיתוף פעולה עם Cyber Forza
ExaGrid מכריזה על תכונות חדשות עבור MSPs בגרסה 7.4.0 ‏ExaGrid® , הספקית של הפתרון היחיד בענף לאחסון גיב
Owkin משיקה את K Pro: כלי עזר ראשון עבור בינה מלכותית מבוססת סוכנים לטובת תעשיית הביו-פארמה המועצם בידי מודלי הייטק ביולוגיים Owkin הכריזה על השקת K Pro, כלי עזר שמביא בינה מלא
Xsight Labs ו-Interface Masters חוברות ומייצרות את התקן המיתוג המשופר (EXA) עם הביצועים הטובים בעולם ‏Xsight Labs הכריזה על שיתוף פעולה אסטרטגי עם Inte
VoltaGrid משתפת פעולה עם אורקל כדי להעצים דאטה סנטרים מבוססי בינה מלאכותית מהדור הבא VoltaGrid LLC תפרוס 2,300 מגה-וואט של תשתית מתקדמת
O’Reilly מפרסמת ספר מעמיק על ניהול נתונים לוגי Denodo, חברה מובילה בניהול נתונים, הודיעה כי O’Rei
דיגיטל 2026: משתמשי האינטרנט עוברים את ה-6 מיליארד, משתמשי המדיה החברתית הופכים ל'רוב על', והשימוש בבינה מלאכותית עולה על מיליארד Meltwater, מובילה עולמית במדיה, מדיה חברתית ומודיע
e& ו-Mavenir חושפות שיתוף פעולה בתחום אבטחת שירותים קוליים ולמניעת הונאות המונעים בידי בינה מלאכותית e& UAE, זרוע הטלקום של קבוצת הטכנולוגיה העולמית e&
Graid Technology מכריזה על הסכם רישיון אסטרטגי עם Intel Corporation להאצת חדשנות בתחום ה-RAID Graid Technology הודיעה על הסכם עם Intel Corporati
GA-ASI ו-Hanwha חתמו על עסקה לייצור כלי טיס בלתי מאוישים עם מרחק המראה ונחיתה קצר מסוג Gray Eagle® General Atomics Aeronautical Systems, Inc. (GA-ASI
קבוצת MISTRAS  משתפת פעולה עם Villari כדי להציע חיישני גילוי סדקים אלחוטיים עבור נכסי פלדה קריטיים MISTRAS Group (NYSE: MG ), מובילה עולמית בפתרונות
זום משתפת פעולה עם אורקל כדי לעזור לארגונים להרחיב את מעורבות הלקוחות Zoom Communications, Inc. (נאסד"ק: ZM) הכריזה על ש
Xsight Labs חוברת ל-Edgecore Networks ומשיקה את ה-800G DPU הראשון בעולם במבנה כרטיס תוסף PCIe® ‏Xsight Labs ו-Edgecore Networks הכריזו היום על זמ
Mitiga מקבלת הכרה כ"פתרון השנה לאבטחה ארגונית בענן" בתוכנית פרסי CyberSecurity Breakthrough לשנת 2025 ‏Mitiga, החברה המובילה בתחום המענה להפרות אפס פגיע
GSK תחשוף המרת IBP מהירה עם OMP ב-Gartner Supply Chain Planning Summit OMP תדגיש ב-Gartner Supply Chain Planning Summit ל
Zoom Phone הגיע ל-10 מיליון משתמשים, והוא משנה את הדרך בה עסקים מתחברים בעידן הבינה המלאכותית Zoom Communications, Inc. (נאסד"ק: ZM) הודיעה כי Z
ExaGrid משיקה נעילת זמן לשימור מונע בינה מלאכותית, להתאוששות מתוכנות כופר ‏ExaGrid®, הספקית של הפתרון היחיד בענף לאחסון גיבו
הוסף תגובה 
תגובות  ( תגובות)